

libprofit

libprofit is a C++ library that produces images based on different luminosity profiles.

	Getting libprofit
	Compiling

	Using libprofit
	From the command-line

	Programatically

	Coordinates

	Profiles
	sersic

	moffat

	ferrer

	coresersic

	king

	brokenexp

	sky

	psf

	null

	Convolution
	Supported convolution methods

	Creating a Convolver

	Using a convolver

	Image cropping

	Model convolution

	Flux capturing
	What is it

	How it works

	Using pre-calculated Masks

	Current and previous status

	Adding a profile
	New Class

	Methods

	Wiring up

	Full example

	Language Bindings

	API
	Library

	Exceptions

	Imaging classes

	Model class

	Profile classes

	Convolvers

	Changelog

Getting libprofit

libprofit is currently hosted in GitHub [https://github.com/ICRAR/libprofit].
To get a copy you can clone the repository:

git clone https://github.com/ICRAR/libprofit

Compiling

libprofit depends on:

	GSL [https://www.gnu.org/software/gsl/]

	R [https://www.r-project.org/]

Both dependencies satisfy the same requirements,
so they are mutually exclusive,
but at least one of them is necessary.
If both are present GSL takes precedence.

Optional requirements are:

	An OpenMP [http://www.openmp.org/]-enabled compiler

	An OpenCL [https://www.khronos.org/opencl/] installation

	FFTW [http://www.fftw.org/]

libprofit’s compilation system is based
on cmake [https://cmake.org/].
cmake will check that you have a proper compiler
(anything supporting some basic C++11 should do),
and scan the system for all required dependencies.

To compile libprofit run
(assuming you are inside the libprofit directory already):

$> mkdir build
$> cd build
$> cmake ..
$> make
$> # optionally for system-wide installation: sudo make install

With cmake you can also specify additional compilation flags.
For example, if you want to generate the fastest possible code
you can try this:

$> cmake .. -DCMAKE_CXX_FLAGS="-O3 -march=native"

You can also specify a different installation directory like this:

$> cmake .. -DCMAKE_INSTALL_PREFIX=~/my/installation/directory

Other cmake options that can be given in the command-line include:

	LIBPROFIT_USE_R: prefer R libraries over GSL libraries

	LIBPROFIT_TEST: enable compilation of unit tests

	LIBPROFIT_DEBUG: enable debugging-related code

	LIBPROFIT_NO_OPENCL: disable OpenCL support

	LIBPROFIT_NO_OPENMP: disable OpenMP support

	LIBPROFIT_NO_FFTW: disable FFTW support

	LIBPROFIT_NO_SIMD: disable SIMD extensions usage

Please refer to the cmake documentation for further options.

Using libprofit

From the command-line

libprofit ships with a command-line utility profit-cli
that reads the model and profile parameters from the command-line
and generates the corresponding image.
It supports all the profiles supported by libprofit,
and can output the resulting image as text values, a binary stream,
or as a simple FITS file.

Run profit-cli -h for a full description on how to use it,
how to specify profiles and model parameters,
and how to control its output.

Programatically

As it name implies, libprofit also ships a shared library
exposing an API that can be used by any third-party application.
This section gives a brief overview on how to use this API.
For a full reference please refer to API.

At the core of libprofit sits Model.
This class holds all the information needed to generate an image.
Different profiles (instances of Profile)
are appended to the model, which is then evaluated.

The basic usage pattern then is as follows:

	Add the profit include:

#include <profit/profit.h>

	Initialize the library with the init() function.
This needs to be called only once in your program:

profit::init();

	First obtain a model instance that will generate profile images
for a given width and height:

profit::Model model(width, height);

	Create a profile. For a list of supported names see Profiles;
if you want to support a new profile see Adding a profile.
If an unknown name is given an invalid_parameter exception will be
thrown:

profit::ProfilePtr sersic_profile = model.add_profile("sersic");

	Customize your profile.
To set the different parameters on your profile call
Profile::parameter() with the parameter name and value:

sersic_profile.parameter("xcen", 34.67);
sersic_profile.parameter("ycen", 9.23);
sersic_profile.parameter("axrat", 0.345);
sersic_profile.parameter("nser=3.56");
// ...

A complete list of parameters can be found on and Profiles and
API.

	Repeat the previous two steps for all profiles
you want to include in your model.

	Evaluate the model simply run:

profit::Image result = model.evaluate();

	If the resulting image needs to be cropped
(see Image cropping for full details)
an additional argument needs to be passed
to Model::evaluate()
to receive the offset at which cropping needs to be,
like this:

profit::Point offset;
profit::Image result = model.evaluate(offset);
profit::Image cropped_image = result.crop({width, height}, offset);

	If there are have been errors
while generating the image
an invalid_parameter exception will be thrown by the code,
so users might want to use a try/catch statement
to identify these situations:

try {
 auto result = model.evaluate();
} catch (profit::invalid_parameter &e) {
 cerr << "Oops! There was an error evaluating the model: " << e.what() << endl;
}

	When the model is destroyed the underlying profiles are destroyed as well.

	When you are finished using the library,
call the finish() function:

profit::finish();

To illustrate this process, refer to the following figure:

[image: _images/evaluation.png]

Coordinates

libprofit differentiates pixels from actual image coordinates.
Pixels are the individual dots that make up an image,
but from the profiles’ point of view
the area where the image is drawn
is a continuum coordinate space.
Profiles use this coordinates to perform their calculations,
as they are more fine grained than individual pixels.

At the model level there are two sets of parameters
that control these two different aspects of the image:

	The width and height parameters indicate
the width and height of the image in numbers of pixels.

	The scale_x and scale_y parameters indicate
the horizontal and vertical scale to convert
the width and height parameters into
image coordinate sizes.

This is shown in the following example:

[image: _images/coordinates.png]
In the example an image is shown using both their pixels
and their image coordinates.
Each square on the grid represents a pixel on the image,
which are indexed in red.
This image’s width is 4, and its height is also 4.
Shown in blue on the other hand
are the image coordinates.
The image’s scale_x is 2 and its scale_y is also 2.
Finally a point is indicated in the image.
Its image coordinates are (1.6, 0.6),
and is contained within the (0,0) pixel.

Profiles use image coordinate to perform their calculations
but still need to store only one value per pixel.
For this purpose the quantities scale_x and scale_y
are stored by libprofit at the model level,
making them available to all profiles to use.
They indicate the width and height of each pixel
in image coordinates.
In most cases profiles evaluate a pixel’s value
using the pixel’s center point in image coordinates;
that is, evaluating at x = i*scale_x + scale_x/2,
where i is the horizontal pixel index,
and likewise for the vertical coordinate.
In other cases, like in the sersic profile,
sub-sampling needs to be performed
to achieve an accurate result.

Profiles

Contents

	sersic

	moffat

	ferrer

	coresersic

	king

	brokenexp

	sky

	psf

	null

This section lists the profiles currently supported by libprofit.

sersic

An implementation of the
Sersic luminosity profile [https://en.wikipedia.org/wiki/Sersic_profile].
The sersic profile describes the intensity of a galaxy
depending on its distance to the center.

The sersic profile accepts the following parameters:

	xcen: x centre of the Sersic profile (can be fractional pixel positions).

	ycen: y centre of the Sersic profile (can be fractional pixel positions).

	mag: Total magnitude of the Sersic profile.
Converted to flux using flux = 10^(-0.4*(mag - magzero)), where
magzero is that of the containing model.

	re: Effective radius

	nser: Sersic index of the Sersic profile.

	ang: The orientation of the major axis of the Sersic profile, in degrees.
The starting point is the positive Y image axis and grows counter-clockwise.

	axrat: Axial ratio of the Sersic profile defined as minor-axis/major-axis,
i.e. axrat = 1 is a circle and axrat = 0 is a line.

	box: The boxiness of the Sersic profile that traces contours of iso-flux,
defined such that r = (x^(2+box)+y^(2+box))^(1/(2+box)).
When box = 0 the iso-flux contours will be normal ellipses,
but modifications between -1 < box < 1 will produce visually boxy distortions.
Negative values have a pin-cushion effect, whereas positive values have a barrel effect
(the major and minor axes staying fixed in all cases).

The sersic profile implements recursive sub-pixel sampling for better results
in areas closer to the profile center.
This sub-sampling can be controller by the following additional parameters:

	rough: Don’t perform any sub-sampling, ignore the rest of the parameters.

	rscale_switch: Radius scale fraction within which sub-sampling is performed.
Pixels outside this radius are not sub-sampled.

	max_recursions: The maximum levels of recursions allowed.

	resolution: Resolution (both horizontal and vertical) to be used
on each new recursion level.

	acc: Accuracy after which recursion stops.

The sersic profile also implements far-pixel filtering,
quickly zeroing pixels that are too far away
from the profile center.
This filtering can be controller by the following parameters:

	rscale_max: Maximum re-based distance to consider for filtering.

	rescale_flux: Whether the calculated profile flux should be scaled
to take into account the filtering performed by re_max.

Finally, an adjust parameter allows the user
whether adjustments of most of the parameters described
above should be done automatically depending on the profile parameters.
libprofit makes a reasonable compromise between speed and accuracy,
and therefore this option is turned on by default.

moffat

The moffat profile works in exactly the same way as the sersic profile.
It also supports sub-pixel sampling using the same parameters.
Because of the nature of the profile
the re and nser parameters from the sersic profiles
are not present, and instead the following new parameters appear:

	fwhm: Full-width at half maximum of the profile
across the major-axis of the intensity profile.

	con: Profile concentration.

ferrer

Again, the ferrer profile works in exactly the same way as the sersic profile.
It replaces the re and nser parameters from the sersic profile
with:

	rout: The outer truncation radius.

	a: The global power-law slope to the profile center

	b: The strength of truncation as the radius approaches rout.

coresersic

The coresersic profile works in exactly the same way as the sersic profile.
In addition to the re and nser parameters from the sersic profile
it also adds:

	rb: The transition radius of the sersic profile.

	a: The strength of the transition from inner core to outer sersic

	b: The inner power-law of the core sersic.

king

The king profile works in exactly the same way as the sersic profile.
It replaces the re and nser parameters from the sersic profile
with:

	rc: The effective radius of the sersic component.

	rt: The transition radius of the sersic profile

	a: The power-law of the King.

brokenexp

The broken exponential profile works in exactly the same way as the sersic profile.
It replaces the re and nser parameters from the sersic profile
with:

	h1: The inner exponential scale length.

	h2: The outer exponential scale length (must be equal to or less than h1).

	rb: The break radius.

	a: The strength of the truncation as the radius approaches rb.

sky

The sky profile provides a constant value for an entire image.

	bg: Value per pixel for the background.
This should be the value as measured in the original image,
i.e. there is no need to worry about the effect of the model’s magzero.

psf

The psf profile adds the model’s psf to the model’s image
at a specific location and for a given user-defined magnitude.

	xcen: The x position at which to generate the centred PSF
(can be fractional pixels).

	ycen: The y position at which to generate the centred PSF
(can be fractional pixels).

	mag: The total flux magnitude of the PSF.

null

The null profile leaves the image area untouched. It is only useful for testing
purposes.

Convolution

Contents

	Supported convolution methods

	Creating a Convolver

	Using a convolver

	Image cropping

	Model convolution

Image convolution in libprofit happens optionally
as part of a Model evaluation.
Internally, the Model uses a Convolver
to perform convolution.

Supported convolution methods

Convolvers are objects that carry out convolution
(via their Convolver::convolve() method).
Depending on the size of the problem,
and on the libraries available on the system,
different convolver types will be available to be used:

	BRUTE_OLD is the simplest convolver.
It implements a simple, brute-force 2D convolution algorithm.

	BRUTE is a brute-force convolver
that performs better that BRUTE_OLD, but still
implements simple, brute-force 2D convolution. It is the default
convolver used by a Model that hasn’t been assigned one,
but requires one.

	FFT is a convolver
that uses Fast Fourier transformations to perform convolution.
Its complexity is lower than the BRUTE,
but its creation can be more expensive.

	OPENCL is a brute-force convolver
implemented in OpenCL.
It offers both single and double floating-point precision
and its performance is usually better
that that of the BRUTE.

Creating a Convolver

Instead of manually selecting the class that should be used,
users create Convolver instances
via the create_convolver() function.
create_convolver() lets the user specify
which type of convolver should be created
(either using an enumeration, or a standard string value),
and a set of creation preferences
that apply differently to different types of Convolvers.

If a Model needs to perform convolution
and a Convolver has been set
on its Model::convolver member
then that convolver is used.
If no convolver has been set,
it creates a new BRUTE
and uses that to perform the convolution.

Using a convolver

Once created,
users can call the Convolver::convolve() method
directly on the resulting convolver,
(or assign it to a Model instance for it to use it).
The Convolver::convolve() methods needs at least three parameters:
an image, a kernel and a mask.
Convolvers will convolve the image with the kernel
only for the pixels in which the mask is set,
or for all pixels if an empty mask is passed.
This implies that the mask, if not empty,
must have the same dimensions that the image.

Image cropping

Some convolvers internally work
with images that are larger
than the original source image
(mostly due to efficiency reasons).
After this internal image expansion occurs,
and the convolution takes place,
the resulting image
is usually cropped at the corresponding point
to match original source image size and positioning
before being returned to the user.

However, users might want to pick
into this internal, non-cropped result
of the convolution process.
To do this,
an additional crop parameter
in the Convolver::convolve() method
determines whether the convolver should return
the original, and potentially bigger, image.
When a non-cropped image is returned,
an additional offset_out parameter
can be given to find out the offset
at which cropping would have started.
The cropping dimensions do not need to be queried,
as they always are the same
of the original source image given to the convolver.

Model convolution

During model evaluation (i.e., a call to Model::evaluate())
users might want to be able to retrieve the non-cropped result
of the internal convolution that takes place
during model evaluation
(as explained in Image cropping).

To do this, users must first
call Model::set_crop() with a false argument.
When calling Model::evaluate(),
users must then also give a Point argument
to retrieve the offset at which
cropping should be done
to remove the image padding
added by the convolution process.

Flux capturing

Flux capturing
refers to the action of fully considering flux
during the convolution process.

What is it

With no convolution taken into account,
profiles already generate the correct luminosity
for each pixel in their respective image.
After that, if there is an extra convolution step
the luminosity in these pixels
gets spread out into their neighbours, and vice-versa.

This is all and well, except when pixels
are close to the edges of the image.
When this happens,
some of their neighbours
are outside the image frame.
Because they are outside,
they had not been evaluated by the profiles,
and their fluxes are considered to be 0.
Therefore, when convolution happens for these pixels,
their final luminosity will be less
than what would have been
if there was a value calculated
for those pixels outside of the image.

This is better seen graphically.
Here is an example of a plain image
(using a sky profile)
after convolution with a simple,
gaussian-like PSF:

[image: _images/convolution_flux_loss.png]
In this image,
it is very clear how the pixels
at the boundaries of the image frame
are loosing flux during convolution.
Again, this is because
pixels outside the image have no flux,
and therefore don’t contribute
to the flux of the pixels within the image
after convolution.

A similar situation happens
when there is a Mask involved:

[image: _images/convolution_with_mask_flux_loss.png]
And a zoom into the top-right corner:

[image: _images/convolution_with_mask_flux_loss_zoom.png]
Correct flux capturing is important
to correctly represent observed images,
which do include flux coming
from outside the field of view.

How it works

As of libprofit 1.9.0,
flux capturing is automatically taken into account
without the user needing to worry
about modifying the inputs to a Model.
This process takes into account
whether convolution is needed at all,
the size of the PSF,
the original Mask,
the finesampling factor set into the Model,
and any other factor affecting this computation.

There are two main transformations that take place
when this automatic adjustment happens
internally in the Model.
First, if there is a Mask involved,
its coverage is expanded.
This coverage expansion is a convolution-like operation,
which is required so the profiles evaluate pixels
outside of the originally-intended area. Like this:

[image: _images/original-mask.png]
[image: _images/expanded-mask.png]
In the figure above,
the left-hand image shows
the original coverage of the Mask,
while the right-hand side shows
the expanded coverage after taking into account
that the convolution process will require
all the pixels in the expanded area
to have values calculated on them.

The second transformation that needs to happen
is the expansion of the Model dimensions.
Like in the first case,
if pixels outside
of the Model original image frame
need to be calculated,
then the Model dimensions need to be adjusted
so these pixels receive values
during profile evaluation.

Using pre-calculated Masks

The process described above
happens automatically
without the user having to adjust
any of the inputs of the Model.

However, in the case of image fitting,
when we know that the original Mask,
PSF, and other inputs will not change
across evaluations of a Model,
some work can be pre-calculated.
In particular,
the final form of the Mask
can be reused across Model evaluations.
This is done in a two-step process:

	The user first calls Model::adjust()
with the intended inputs.
This results on a pre-calculated Mask
that works for that set of inputs

	Then, the mask is passed down
as usual to the Model
via Model::set_mask().
Additionally,
the Model is informed
that no further adjustment should be done
on that mask
via Model::set_adjust_mask()
with a false argument.

Current and previous status

Until libprofit 1.9.0,
images produced by libprofit
failed to correctly capture flux correctly
in scenarios when there was a convolution involved.
The ProFit [https://github.com/ICRAR/ProFit] R package
implemented this as part of its fitting process though,
but other users would have been lacking this feature.

Adding a profile

Contents

	New Class

	Methods

	Parameters

	Validation

	Evaluation

	Constructor

	Wiring up

	Full example

This section explains
the steps required to add a new profile to libprofit.

In a nutshell, to add a new profile one must:

	Create a new subclass of Profile

	Write the mandatory methods

	Associate the new profile with a standard name

In all steps below,
a completely artificial example profile is being added,
This new profile takes three parameters:
param1 and param2 are double numbers,
while param3 is an unsigned integer.
The profile fills the image by taking the X and Y coordinates
and filling the pixel
with the value |(param1 - param2) * param3 * (x - y)|
and requires that all parameters are positive or 0.

The data types used in this example
are described in detail in API.

New Class

The first step to add a new profile is to
define the C++ class that will hold all its information.
Any kind of information can be added to the class,
but it is required that the class extends
the base Profile class.
The class should be defined
in an .h file in the profit directory
so it can be used by others,
and should be part of the profit namespace.

So far, it should look like this:

class ExampleProfile : public Profile {
private:
 double param1;
 double param2;
 unsigned int param3;
};

Methods

Each profile requires a minimum of three methods
that need to be written:

	The constructor,

	A method to validate the profile’s values, and

	A method to evaluate it.

The two latter are imposed by the base class,
and must be called validate and
evaluate.

In addition, to be able to receive parameters given by the user,
the parameter methods
must be overwritten.

Parameters

To receive parameters given by the user
the new class must overwrite the necessary
parameter methods from the parent class.
There are several flavours of this methods,
depending on the parameter data type,
so only the necessary ones are required.

In our example we only have parameters
of type double and unsigned int
so we only need to overwrite those two methods.
This method must call its parent method
to check if it already set a parameter with that name,
in which case it should short-cut and return true;
it then should check the parameter name
against its own parameters,
and return either true or false
if the parameter was set or not.

In our example, double parameters are set like this:

void ExampleProfile::parameter(const std::string &name, double value) {

 if(Profile::parameter(name, value)) {
 return true;
 }

 if(name == "param1") { param1 = value; }
 else if(name == "param2") { param2 = value; }
 else {
 return false;
 }

 return true;

}

Validation

After parameters are all set,
libprofit will call the validation function.
The validation function’s responsibility,
as its name implies,
is to validate the inputs of the profile,
checking that they obey the required minimum to make the operation successful.

In the case of the example profile it was mentioned
that all parameters must be positive,
so the code must test for that.
If a violation occurs, a invalid_parameter exception is thrown.
This exception will prevent the profile (and in fact the whole model)
from being evaluated.

An example implementation would thus look like this:

void ExampleProfile::validate() {

 if (this->param1 < 0) {
 throw invalid_parameter("param1 is negative");
 }
 if (this->param1 < 0) {
 throw invalid_parameter("param2 is negative");
 }
 if (this->param3 < 0) {
 throw invalid_parameter("param3 is negative");
 }

}

Note also that the base Profile class has a reference
to the model this profile is part of.
Having access to the model means
that one can validate profile-specific values
against model-global values as well.
For example, if a new restriction is added stating
that the example profile can only be run on images
that are bigger than 20 x 20
then the following code could be added:

if (this->model->width < 20 || this->model->height < 20) {
 throw invalid_parameter("can't apply example profile to images less than 20x20");
}

Finally, if a profile needs no validation at all
a validation function must still be provided
with an empty body.

Evaluation

Next, we look to the evaluate method.
Its image argument
corresponds to the surface where the pixels must be drawn.
All profiles in the model receive
the same image surface,
so care must be taken
to add values into the image’s pixel
rather than setting them.
The image is already initialized with zeros when created,
so if your profile doesn’t cover the entire image
no action needs to occur.

It was mentioned earlier that the example profile
fills the image by taking the X and Y coordinates
and filling the pixel
with the value |(param1 - param2) * param3 * (x - y)|.
An implementation of this would then look like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

	void ExampleProfile::evaluate(std::vector<double> &image) {

 Model *model = this->model;
 double x, y;
 unsigned int i, j;
 double half_xbin = this->model->scale_x/2.;
 double half_ybin = this->model->scale_y/2.;

 x = 0;
 for (i=0; i < model->width; i++) {
 x += half_xbin;

 y = 0;
 for (j=0; j < model->height; j++) {
 y += half_ybin;

 if (!model->calcmask || model->calcmask[i + j*model->width]) {
 double val = fabs((this->param1 - this->param2) * this->param3 * (x - y));
 image[i + j*model->width] = val;
 }

 y += half_ybin;
 }
 x += half_xbin;
 }
 }

The code above performs the following steps:

	On line 10 we loop around the X axis.
i is the horizontal pixel index on the image
and spans from 0 to model->width.
At the same time we keep track of x,
which is a floating point number representing
the horizontal image coordinate
used to evaluate the profile on that pixel.
See Coordinates for more details
on the coordinate system used by libprofit.

	Similarly, on line 14 we loop around the Y axis.

	The model might specify a calculation mask,
indicating that some pixels should not be calculated,
which is checked in line 17

	Being now on a given X and Y coordinate,
we evaluate our profile on line 18.

	Finally on line 19 we store the evaluated profile
on the corresponding pixel of the image.

Constructor

Last but not least we look at the constructor.
Its signature looks like this:

ExampleProfile(const Model &model, const std::string &name);

The constructor arguments must be passed down to the parent class.
The constructor is also in charge of populating the profile
with its default values.
For this example the code would look like this:

ExampleProfile::ExampleProfile(const Model &model, const std::string &name) :
 Profile(model, name),
 param1(1.),
 param2(2.),
 param3(3)
{
 // no-op
}

Wiring up

To finally wire up your new profile with the rest of libprofit
you need to give it a name.
This is done at the profit.cpp file.
Open it in an editor
and look for the Model::add_profile method.
This method creates different profile instances based on the given name.
Add a new else if statement to create your new profile
imitating what is done for the other ones.

To add the example profile the following lines should thus be added
to the first if/else if block:

else if (profile_name == "example") {
 profile = static_cast<Profile *>(new ExampleProfile());
}

In order to be able to “see” the constructor
the example.h file must also be included,
which is done earlier on in profit.cpp:

#include "profit/example.h"

Finally,
you need to manually add the new .cpp file
to the list of files to be compiled.
This is done by adding it to the PROFIT_SRC list
in the CMakeLists.txt file:

set(PROFIT_SRC
 [...]
 src/example.cpp
 [...]
)

Full example

Below are the full new files
that have been described below.
example.h contains the new data type definition,
plus the signature of the creation function,
while example.cpp contains the implementation
of the creation, validation and evaluation
of example profiles.

example.h

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

	/* copyright notice, etc */
#ifndef _EXAMPLE_H_
#define _EXAMPLE_H_

#include <string>
#include <vector>

#include "profit/profile.h"

namespace profit
{

class ExampleProfile : public Profile {

public:
	ExampleProfile(const Model &model, const std::string &name);
	void validate() override;
	void evaluate(Image &image, const Mask &mask, const PixelScale &scale, const Point &offset, double magzero) override;

protected:
	bool parameter(const std::string &name, double value);
	bool parameter(const std::string &name, unsigned int value);

private:
	double param1;
	double param2;
	unsigned int param3;

};

} /* namespace profit */

#endif

example.cpp

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

	/* copyright statement, etc */

#include <cmath>
#include "example.h"

#include "profit/exceptions.h"
#include "profit/model.h"

namespace profit {

ExampleProfile::ExampleProfile(const Model &model, const std::string &name) :
 Profile(model, name),
	 param1(1.),
	 param2(2.),
	 param3(3)
{
	// no-op
}

bool ExampleProfile::parameter(const std::string &name, double value) {

	if(Profile::parameter(name, value)) {
		return true;
	}

	if(name == "param1") { param1 = value; }
	else if(name == "param2") { param2 = value; }
	else {
		return false;
	}

	return true;
}

bool ExampleProfile::parameter(const std::string &name, unsigned int value) {
	if(Profile::parameter(name, value)) {
		return true;
	}

	if(name == "param3") { param3 = value; }
	else {
		return false;
	}

	return true;
}

void ExampleProfile::validate() {

	if (this->param1 < 0) {
		throw invalid_parameter("param1 is negative");
	}
	if (this->param1 < 0) {
		throw invalid_parameter("param2 is negative");
	}
	if (this->param3 < 0) {
		throw invalid_parameter("param3 is negative");
	}

	/*
	if (this->model->width < 20 || this->model->height < 20) {
		throw invalid_parameter("can't apply example profile to images less than 20x20");
	}
	*/
}

void ExampleProfile::evaluate(Image &image, const Mask &mask, const PixelScale &scale, double magzero) {

	double x, y;
	unsigned int i, j;
	auto width = image.getWidth();
	double half_xbin = scale.first/2.;
	double half_ybin = scale.second/2.;

	x = 0;
	for (i=0; i < width; i++) {
		x += half_xbin;

		y = 0;
		for (j=0; j < image.getHeight(); j++) {
			y += half_ybin;

			if (not mask or mask[i + j * width]) {
				double val = std::abs((this->param1 - this->param2) * this->param3 * (x - y));
				image[i + j * width] = val;
			}

			y += half_ybin;
		}
		x += half_xbin;
	}
}

} /* namespace profit */

Language Bindings

Bindings exist to wrap libprofit into different languages.

At the moment of writing the following two are available:

	pyprofit [https://github.com/ICRAR/pyprofit]:
a Python wrapper for libprofit.

	ProFit [https://github.com/ICRAR/ProFit]:
A package for R that wraps libprofit and performs high-level
profile fitting against an input galaxy.

Additional language bindings can be easily added in the future if required.

API

	Library

	Exceptions

	Imaging classes

	Model class

	Profile classes

	Convolvers

Library

Warning

doxygenenum: Cannot find enum “profit::simd_instruction_set” in doxygen xml output for project “libprofit” from directory: doxygen-output/xml

Warning

doxygenfunction: Cannot find function “profit::init” in doxygen xml output for project “libprofit” from directory: doxygen-output/xml

Warning

doxygenfunction: Cannot find function “profit::finish” in doxygen xml output for project “libprofit” from directory: doxygen-output/xml

Warning

doxygenfunction: Cannot find function “profit::version” in doxygen xml output for project “libprofit” from directory: doxygen-output/xml

Warning

doxygenfunction: Cannot find function “profit::version_major” in doxygen xml output for project “libprofit” from directory: doxygen-output/xml

Warning

doxygenfunction: Cannot find function “profit::version_minor” in doxygen xml output for project “libprofit” from directory: doxygen-output/xml

Warning

doxygenfunction: Cannot find function “profit::version_patch” in doxygen xml output for project “libprofit” from directory: doxygen-output/xml

Warning

doxygenfunction: Cannot find function “profit::has_openmp” in doxygen xml output for project “libprofit” from directory: doxygen-output/xml

Warning

doxygenfunction: Cannot find function “profit::has_fftw” in doxygen xml output for project “libprofit” from directory: doxygen-output/xml

Warning

doxygenfunction: Cannot find function “profit::has_fftw_with_openmp” in doxygen xml output for project “libprofit” from directory: doxygen-output/xml

Warning

doxygenfunction: Cannot find function “profit::has_opencl” in doxygen xml output for project “libprofit” from directory: doxygen-output/xml

Warning

doxygenfunction: Cannot find function “profit::opencl_version_major” in doxygen xml output for project “libprofit” from directory: doxygen-output/xml

Warning

doxygenfunction: Cannot find function “profit::opencl_version_minor” in doxygen xml output for project “libprofit” from directory: doxygen-output/xml

Warning

doxygenfunction: Cannot find function “profit::has_simd_instruction_set” in doxygen xml output for project “libprofit” from directory: doxygen-output/xml

Exceptions

Warning

doxygenclass: Cannot find class “profit::invalid_parameter” in doxygen xml output for project “libprofit” from directory: doxygen-output/xml

Warning

doxygenclass: Cannot find class “profit::unknown_parameter” in doxygen xml output for project “libprofit” from directory: doxygen-output/xml

Warning

doxygenclass: Cannot find class “profit::opencl_error” in doxygen xml output for project “libprofit” from directory: doxygen-output/xml

Warning

doxygenclass: Cannot find class “profit::fft_error” in doxygen xml output for project “libprofit” from directory: doxygen-output/xml

Imaging classes

Warning

doxygenclass: Cannot find class “profit::_2dcoordinate” in doxygen xml output for project “libprofit” from directory: doxygen-output/xml

Warning

doxygentypedef: Cannot find typedef “profit::Dimensions” in doxygen xml output for project “libprofit” from directory: doxygen-output/xml

Warning

doxygentypedef: Cannot find typedef “profit::Point” in doxygen xml output for project “libprofit” from directory: doxygen-output/xml

Warning

doxygenclass: Cannot find class “profit::surface” in doxygen xml output for project “libprofit” from directory: doxygen-output/xml

Warning

doxygenclass: Cannot find class “profit::Image” in doxygen xml output for project “libprofit” from directory: doxygen-output/xml

Warning

doxygenclass: Cannot find class “profit::Mask” in doxygen xml output for project “libprofit” from directory: doxygen-output/xml

Model class

Warning

doxygenclass: Cannot find class “profit::Model” in doxygen xml output for project “libprofit” from directory: doxygen-output/xml

Profile classes

Warning

doxygenclass: Cannot find class “profit::Profile” in doxygen xml output for project “libprofit” from directory: doxygen-output/xml

Warning

doxygenclass: Cannot find class “profit::RadialProfile” in doxygen xml output for project “libprofit” from directory: doxygen-output/xml

Warning

doxygenclass: Cannot find class “profit::SersicProfile” in doxygen xml output for project “libprofit” from directory: doxygen-output/xml

Warning

doxygenclass: Cannot find class “profit::MoffatProfile” in doxygen xml output for project “libprofit” from directory: doxygen-output/xml

Warning

doxygenclass: Cannot find class “profit::FerrerProfile” in doxygen xml output for project “libprofit” from directory: doxygen-output/xml

Warning

doxygenclass: Cannot find class “profit::CoreSersicProfile” in doxygen xml output for project “libprofit” from directory: doxygen-output/xml

Warning

doxygenclass: Cannot find class “profit::BrokenExponentialProfile” in doxygen xml output for project “libprofit” from directory: doxygen-output/xml

Warning

doxygenclass: Cannot find class “profit::KingProfile” in doxygen xml output for project “libprofit” from directory: doxygen-output/xml

Warning

doxygenclass: Cannot find class “profit::PsfProfile” in doxygen xml output for project “libprofit” from directory: doxygen-output/xml

Warning

doxygenclass: Cannot find class “profit::SkyProfile” in doxygen xml output for project “libprofit” from directory: doxygen-output/xml

Warning

doxygenclass: Cannot find class “profit::NullProfile” in doxygen xml output for project “libprofit” from directory: doxygen-output/xml

Convolvers

Warning

doxygenenum: Cannot find enum “profit::ConvolverType” in doxygen xml output for project “libprofit” from directory: doxygen-output/xml

Warning

doxygenclass: Cannot find class “profit::Convolver” in doxygen xml output for project “libprofit” from directory: doxygen-output/xml

Warning

doxygenclass: Cannot find class “profit::ConvolverCreationPreferences” in doxygen xml output for project “libprofit” from directory: doxygen-output/xml

Warning

doxygenfunction: Cannot find function “profit::create_convolver” in doxygen xml output for project “libprofit” from directory: doxygen-output/xml

Warning

doxygenfunction: Cannot find function “profit::create_convolver” in doxygen xml output for project “libprofit” from directory: doxygen-output/xml

Changelog

Development version

	A new null convolver has been added
that does no convolution
and simply returns the source image unmodified.
This is only useful for testing.

1.9.3

	A bug in the OpenCL implementation of the radial profiles
prevented Models with multiple profiles
from displaying correctly,
as the output image would contain
only the values of last profile.
This was a problem introduced
only in the last version of libprofit,
and not an ongoing issue.

	When using OpenCL,
any radial profile specifying rough=true
caused the output image not to be scaled properly,
with values not taking into account the profile’s magnitude
or pixel scale.
This seems to have been an issue for a long time,
but since rough=true is not a common option
it had gone under the radar for some time.

1.9.2

	All profile evaluation has been changed
from being absolute (profiles set the final value of a pixel)
to be additive (their add their pixel values onto the image).
This change in behavior has the effect
that one less memory allocation is needed,
which can be a big difference
when generating big images,
while also simplifying the logic
of the Model evaluation.

	Model objects now internally store
the normalized version of the PSF
given by the user instead of the original,
which was never really needed.

	profit-cli now makes it easier to specify
multiple copies of the same profile,
useful for scaling tests.
Also, writing FITS files in little endian systems
doesn’t allocate extra memory anymore.

	Minor improvements to imaging classes.

1.9.1

	The implementation of the Model class has been improved.
In particular it has been made more memory efficient,
which is particularly important in scenarios
where many profiles (in the order of thousands)
are added into it.
Previously each profile was allocated its own Image,
which added both to the memory footprint,
and to the total runtime.
Now a single scratch space is used for all profiles,
and individual results are immediately summed up,
respecting the convolution settings of each profile.
Experiments with the null profile
show a significant decrease in runtime
when many Model evaluations take place.

1.9.0

	Implemented correct flux capturing.
This feature was previously implemented
in the ProFit [https://github.com/ICRAR/ProFit] R package
as part of its fitting process,
but it was otherwise unavailable.

	Added explicit support to allow convolution
of images against kernels with bigger dimensions
than the images themselves.
This was previously supported implicitly, and only in certain cases,
by the OpenCL convolver,
while the FFT convolver threw an proper exception,
and the brute-force convolvers usually crashed.
This first implementation is not ideal,
but the use case is rare.

	Several performance and code improvements,
like removing unnecessary code,
avoiding unnecessary conversions
and avoiding a few dynamic allocations.

1.8.2

	Users can now select the underlying
SIMD-capable instruction set to use
for brute-force convolution.

	New library method has_simd_instruction_set()
for users to check whether libprofit was compiled
with support for different instruction sets.

	Improved FFTW-based convolver performance
by avoiding dynamic memory allocation at convolution time.
This brings a noticeable performance improvement
of around 20%.

1.8.1

	Adding support for FFTW versions lower than 3.3.

1.8.0

	profit-cli compiling in Windows.

	New Profile::parameter() method to specify
parameters and values with a single name=value string.

	New utility methods: trim(), split() and setenv().

	Using SSE2/AVX SIMD extensions to implement brute-force convolution
if the CPU supports it, with pure C++ implementation as a fallback.
Can be disabled with -DLIBPROFIT_NO_SIMD=ON.

	Potentially fixed the importing of FFTW wisdom files
in systems with more than one FFTW installation.

	Fixed compilation of brokenexponential OpenCL kernel in platforms where it
was failing to compile.

	Compiling in release mode (i.e., -O3 -DNDEBUG in gcc/clang) by default.

	Lowering OpenMP requirement to 2.0 (was 3.0).

	OpenCL kernel cache working for some platforms/devices that was not
previously working.

	Many internal code cleanups and design changes
to make code easier to read and maintain.

1.7.4

	FFT convolution using hermitian redundancy. This increases performance of
FFT-based convolution by at least 10% in release builds, and addresses some
warnings pointed out by valgrind.

1.7.3

	Added init_diagnose() and finish_diagnose() functions to avoid
printing to stdout/stderr from within libprofit.

1.7.2

	Fixed double detection support for OpenCL devices regardless of the
supported OpenCL version.

	Fixed a few compiling issues under Visual Studio compiler.

	Continuous integration in Windows via AppVeyor [https://ci.appveyor.com/project/rtobar/libprofit]

1.7.1

	Added Image::upsample() and Image::downsample() to scale an
image up or down (using different modes).

	Added Model::set_return_finesampled() to return internally
upsampled images.

1.7.0

	Internal implementation dependencies clearly hidden from users. This means
that users compiling against libprofit don’t need to search for header files
other than libprofit’s, making it much easier to write code against libprofit.

	Model redesigned. No member variables are exposed anymore; instead
different setter/getter methods must be used.

	Image redesigned. In summary, it looks much more like a standard
container now.

	New Model::set_crop() specifies whether cropping should be carried out
after convolution, if the convolution needs to pad the image.

	Model::evaluate() has an extra optional parameter to receive the
offset at which cropping needs to happen (if it hasn’t, see
Model::set_crop()) to remove padding from the resulting image.

	FFTW convolution uses real-to-complex and complex-to-real forward and
backwards transforms respectively (instead of complex-to-complex transforms
both ways), which is more efficient and should use less memory.

	New on-disk OpenCL kernel cache. This speeds up the creation of OpenCL
environments by a big factor as compilation of kernels doesn’t happen every
time an environment is created.

	New on-disk FFTW plan cache. This speeds up the creation of FFT-based
convolvers by a big factor as the plans are not calculated every time for a
given set of parameters.

	New null profile, useful for testing.

	New init() and finish() calls to initialize and finalize
libprofit. These are mandatory, and should be called before and after using
anything else from libprofit.

1.6.1

	Brute-force convolver about 3x faster than old version.

	Fixing compilation failure on MacOS introduced in 1.6.0.

	Center pixel in sersic profile treated specially only if adjust parameter
is on.

Index

 _static/up-pressed.png

_images/convolution_flux_loss.png

_images/convolution_with_mask_flux_loss.png

_static/up.png

_images/evaluation.png
2 add profile

22 profile

3: evaluate() : void

356 image

31 walidaten)

void

3.3: evaluate(image : double*)

[] 35 addimages_and_convolve

void

a1

_images/expanded-mask.png

_images/convolution_with_mask_flux_loss_zoom.png

_images/coordinates.png
A

0.8) (3.5)

©1)

©0) | wo

0o (1.6 06) ©0) %

_images/original-mask.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 libprofit

 		
 Getting libprofit

 		
 Compiling

 		
 Using libprofit

 		
 From the command-line

 		
 Programatically

 		
 Coordinates

 		
 Profiles

 		
 sersic

 		
 moffat

 		
 ferrer

 		
 coresersic

 		
 king

 		
 brokenexp

 		
 sky

 		
 psf

 		
 null

 		
 Convolution

 		
 Supported convolution methods

 		
 Creating a Convolver

 		
 Using a convolver

 		
 Image cropping

 		
 Model convolution

 		
 Flux capturing

 		
 What is it

 		
 How it works

 		
 Using pre-calculated Masks

 		
 Current and previous status

 		
 Adding a profile

 		
 New Class

 		
 Methods

 		
 Parameters

 		
 Validation

 		
 Evaluation

 		
 Constructor

 		
 Wiring up

 		
 Full example

 		
 Language Bindings

 		
 API

 		
 Library

 		
 Exceptions

 		
 Imaging classes

 		
 Model class

 		
 Profile classes

 		
 Convolvers

 		
 Changelog

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

